IAEA International Conference on Research Reactors: Safe Management and Effective Utilization November 14 – 18, 2011 • Rabat, Morocco

### Importance of Research Reactors in Human Capacity Building in Nuclear Science and Engineering

Ayman I. Hawari, Ph.D. Professor & Director

Nuclear Reactor Program North Carolina State University Raleigh, NC 27695, USA

# **Research/Training Reactors?**

Typically are intense sources of radiation.

- Primarily produces neutrons and gamma-rays.
  Using this primary radiation secondary radiation can also be produced.
- The produced radiation can be used for performing research and educational studies either in the core of the reactor or can be guided to be used in ex-core experiments.
- While the reactor does not produce electricity, it can be used to understand the fundamental concepts that are relevant to the safe operation and control of electricity producing reactors.

### Research/Training Reactors Motivation

- Nuclear and radiation technology continue to serve many useful functions
  - Energy Generation 14% of world electricity is nuclear
  - Medical applications production of medical isotopes
    Mo-99, the most utilized medical isotope is mainly produced by nuclear reactors
  - Technology development various techniques
    - Neutron science
    - Imaging
    - Activation analysis

## Research/Training Reactors Mission

### **Education**

- Provide a hands-on understanding of the physics and operations of nuclear reactors to the next generation of nuclear engineers
- Serve as a multi-disciplinary education center for all members of the university community in the area of radiation physics applications
- Provide training in support of nuclear power development

#### Scientific research

 Develop state-of-the-art facilities for understanding and applying the principles of radiation interaction with matter
 Includes in-core and ex-core studies

#### National service

Support the national infrastructure through the use of radiation technology in various aspects including medical and industrial

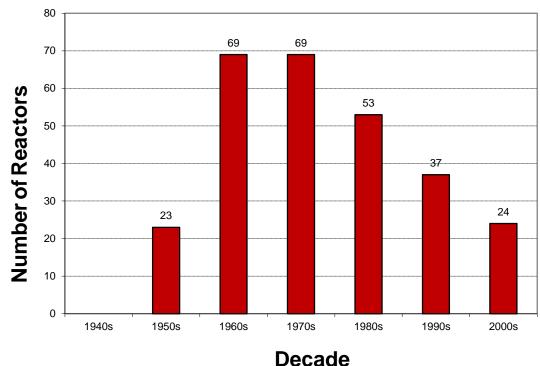
## Reactors for Human Capacity Building -History

### The first university reactor in the world constructed specifically to meet a training and education mission is the R-1 reactor at NC State University



Dubbed by the Associated Press Science Editor

### **"First Temple of The Atom"**


Envisioned 1949 Achieved criticality September 5, 1953



#### **U.S. Nuclear Research and Test Reactors**

### Reactors for Human Capacity Building – Trends and Status

Since 1953 the following trend can be established for university reactors in the USA



#### **Operating US University Reactors**

### **Research/Training Reactors Relevance to Workforce Development**

The importance of these reactors has been affirmed by many studies

### Readiness of the U.S. Nuclear Workforce for 21<sup>st</sup> Century Challenges

A Report from the APS Panel on Public Affairs Committee on Energy and Environment

June 2008

Stabilize funding for research and training reactors so that numbers cannot diminish further

### North Carolina State University



- Largest member of the North Carolina Public University system – oldest public system in the United States
- Enrolls 30,000 undergraduate students and 5,000 graduate students
- 8,000 faculty, researchers and professional staff

# Nuclear Reactor Program

- A university wide center
- Supports the nuclear science and engineering education of:
  - 200 undergraduate students
  - 70 graduate students

### □ Staffed by 13 senior staff members

- Graduate students assist with technical investigation and facility development
- Undergraduate students assist in reactor operations

### The People

Dr. Ayman Hawari Director, Nuclear Reactor Program Professor of Nuclear Engineering

Faculty Profile webpage

2116 Burlington Engineering Laboratories Phone: 919.515.4598 Fax: 919.513.1276 ayman hawari@ncsu.edu

Wendy So Administrative Assistant

2117 Burlington Engineering Laboratories Phone: 919.515.7294 Fax: 919.513.1276 wendy so@ncsu.edu

Andrew Cook, SRO Manager, Engineering and Operations

2120 Burlington Engineering Laboratories Phone: 919.515.4602 Fax: 919.513.1276 atcook@ncsu.edu

Larry Bronssard SRO Chief Reactor Operator

2123 Burlington Engineering Laboratories Phone: 919.515.4604 Fax: 919.513.1276 rouss@ncsu adı

Kerry Kincaid, SRO Chief of Reactor Maintenance

2123 Burlington Engineering Laboratories Phone: 919.515.4603 Fax: 919.513.1276 kkincaid@eos.ncsu.edu



Scott Lassell, SRO Manager, Nuclear Services Lecturer, Dept. of Nuclear Engineering

B104 Burlington Engineering Laboratories Phone: 919.515.3347 Fax: 919.513.1276 scott lassell@ncsu.edu



Gerry Wicks, CHP Reactor Health Physicist Lecturer, Dept. of Nuclear Engineering

2119 Burlington Engineering Laboratories Phone: 919.515.4601







Dr. Saurabh Mukherjee Research Associate Intense Positron Source Facility

B105 Burlington Engineering Laboratories Phone: 919.513.1443 Fax: 919.513.1276 saurabh.mukherjee@ncsu.edu

Dr. Bernard Wehring Research Professor Ultra Cold Neutron Source Facility

2124 Burlington Engineering Laboratories Phone: 919.515.4599 Fax: 919.515.5115 bwwehrin@eos.ncsu.edu







ekaterina.korobkina@ncsu.edu

Dr. Jeremy Moxom Senior Research Associate Intense Positron Source Facility

2126 Burlington Engineering Laboratories Phone: 919.515.4606 Fax: 010 513 1276 jmoxom@unity.ncsu.edu



10 undergraduate student operators (RO licensed by US NRC) 

10 MS/PhD students distributed among the research facilities

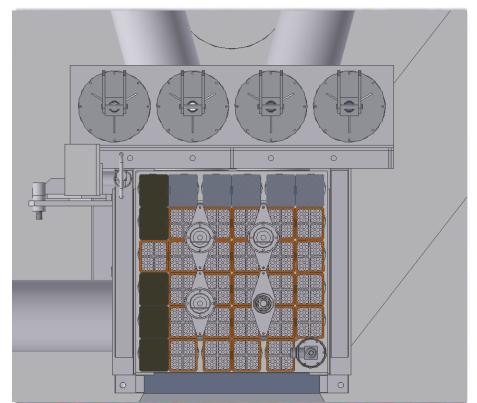


Services Technician

B104 Burlington Engineering Laboratories Phone: 919.513.7242 Fax: 919.513.1276 bilvi@ncsu.edu

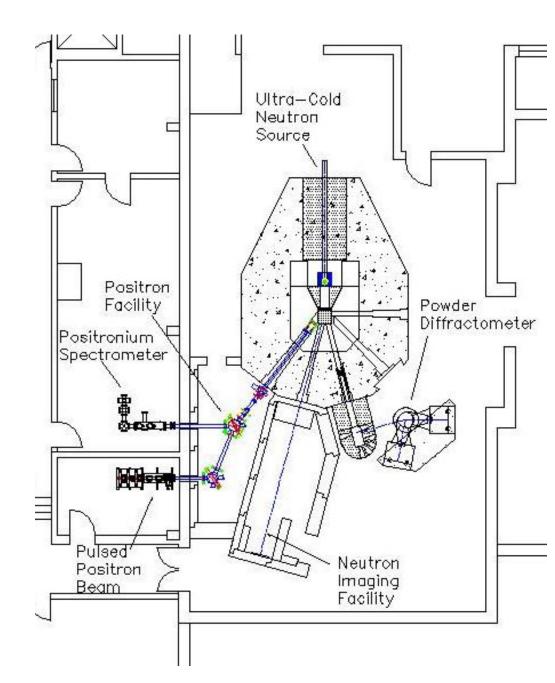
Dr. Qingsheng Cai Research Associate Neutron Powder Diffraction Facility (NPDF)

B-104 Burlington Engineering Laboratories Phone: 919.515.4607 Fax: 919.513.1276 ocai@unity.ncsu.edu






2113 Burlington Engineering Laboratories Phone: 919.515.3302 Fax: 919.513.1276


# **PULSTAR Reactor**

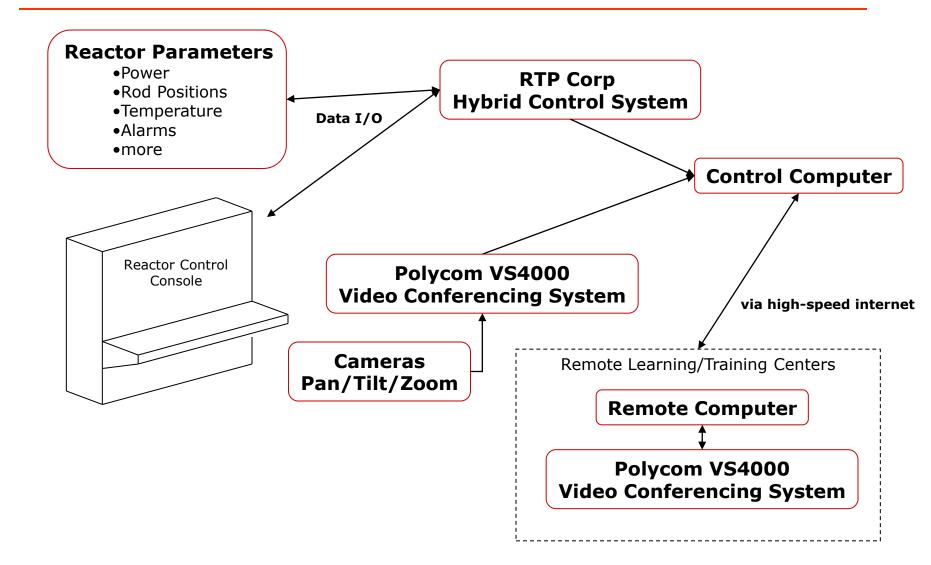
- 1-MW power
- Open tank
- Light water moderated and cooled
- 5 x 5 array of fuel assemblies
- □ 5 x 5 array of pins
- □ Sintered UO<sub>2</sub> pellets
- □ 4% enriched



Licensed until 2017

- Meet institutional mission
  - On-campus and off campus education
- Integrate into national objectives
  - Science R&D objectives
- Industrial engagement
  - Technology infrastructure



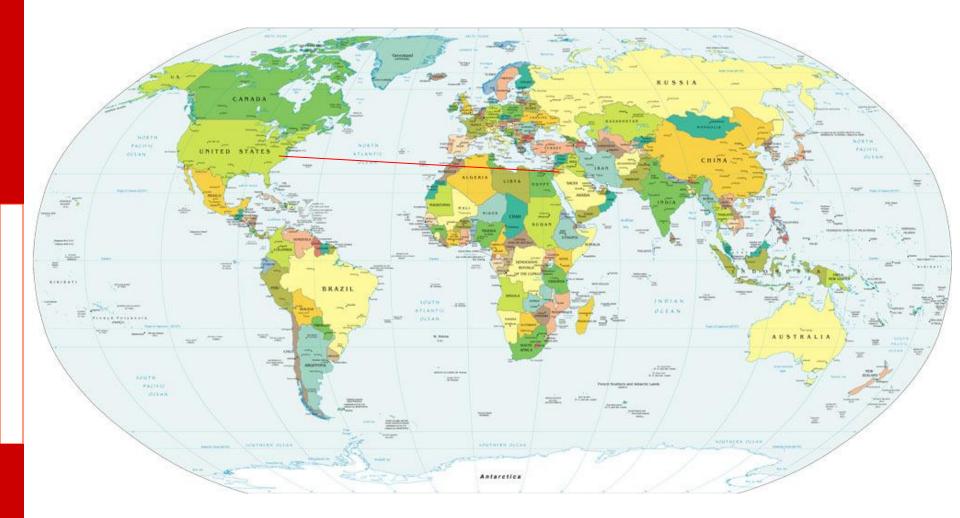

# **On-Campus Education**



Offer academic courses in support of the Nuclear Engineering education

Conduct a 2semester reactor operator training sequence

### PULSTAR Internet A/V Data Link




#### The PULSTAR control room as Viewed By distance students at





Students Collecting and analyzing PULSTAR data during a remote lab session



Connected the PULSTAR reactor at NCSU with JUST Via Internet data and video conference link

## International Kickoff Ceremony

### November 1, 2010



Jordan University of Science and Technology & North Carolina State University



# Internet Lab Session with JUST



# Research/Training Reactors Summary

- Research/Training reactors have demonstrated the ability to remain viable educational tools in the 21<sup>st</sup> century
- The impact of these reactors is broad in two major ways
  - Through the use of modern technology the reach of the reactor is expanded beyond the confines of the physical campus
  - Multi-disciplinary activities make these reactors valuable to a much wider audience and increase their value to the university
- Scientific research ensures that the reactor is fulfilling its education mission at all levels of education graduate and undergraduate